Творческая
страница
Белашова
  - Открытия
 - Изобретения
Новые  технические  разработки
   Главная

|

Научные  открытия

|

Изобретения

|

Новые  технические  разработки

|

Электрические  машины

|

Военные  разработки

|

Солнечная  система   
   Электростанции

|

Автомобильные  двигатели

|

Новые  законы  физики

|

Гидродинамика

|

Новые  математические  формулы

|

Философия

|

Комментарии   
глава Законы образования
   планет нашей Галактики
   линия
глава Механизмы образования
   планет нашей Галактики
   линия
глава Новые законы
   электрических явлений
   линия
глава Новые законы
   по гидродинамике
   линия
глава Расчёт кавитационных
   тепловых нагревателей
   линия
глава Расчёт модульных
   ветряных двигателей
   линия
глава Видеофильмы научных
   и технических открытий
   линия
глава Макет механизма
   вращения планет
   линия
глава Бесплотинная мини ГЭС
   линия
глава Ветряной двигатель
   линия
глава Низкооборотный
   генератор
   линия
глава Кавитационный
   нагреватель
   линия
глава Гравитация
   линия
глава Кавитация
   линия
глава Публикации СМИ
   линия
глава Гостевая книга
   линия
   линия
глава Полезные ссылки
   линия

Комментарий  для  производителей  и  потребителей
гидрофизических  кавитационных  тепловых  нагревателей.

                               

Уважаемые посетители сайта, предлагаю вам свой комментарий для производителей и потребителей гидрофизических кавитационных тепловых нагревателей, которые предназначены для автономных систем теплоснабжения малой и средней мощности.

Гидрофизический кавитационный тепловой нагреватель Белашова содержит корпус, устройство подачи исходного материала, устройство отвода отработанного материала, механизм торцевого уплотнения, камеру высокого и низкого давления, сужающее устройство, привод, кавитатор для перемещения жидкости или тонкодисперсных смесей и подвижное или неподвижное устройство предварительного прогревания жидких, проводящих электрический ток химических компонентов. Гидрофизический кавитационный тепловой нагреватель Белашова обладает преимуществами перед существующими устройствами тем, что имеет:

- модульную многофункциональную конструкцию,

- тепловой нагреватель имеет малые габариты и вес,

- тепловой нагреватель имеет, надёжное уплотнение,

- тепловой нагреватель имеет систему подавления шума,

- тепловой нагреватель имеет устройство передачи тепловой энергии.

линия

Потребителям гидрофизических кавитационных нагревателей необходимо знать, что данные устройства являются пожаробезопасными, так как не имеют нагревательного элемента, но издают шум, который может быть вам не совсем приятен и полезен.

линия

При изготовлении гидрофизического кавитационного теплового нагревателя, для автономных систем теплоснабжения малой и средней мощности, необходимо учитывать ряд специфических особенностей и множество конструктивных тонкостей. Например, нельзя изготавливать больших ответвлений линий трубопроводов от гидрофизического кавитационного теплового нагревателя, так как происходит неравномерный нагрев смеси воды и воздуха и сильный разогрев локальной области гидрофизического кавитационного теплового нагревателя, где происходит сама кавитация. Нужно изолировать вал асинхронного двигателя от гидрофизического кавитационного теплового нагревателя теплозащитной муфтой, чтобы температура от локальной части кавитатора и сужающего устройства не передавалась асинхронному двигателю и не уменьшала его к.п.д. Нужно учитывать поведение смеси воды и воздуха на всех этапах его перемещения по трубопроводу и гидрофизическому кавитационному тепловому нагревателю. Необходимо знать из какого материала нужно изготовить лопасти кавитатора, вал кавитатора, отверстие сужающего устройства. Необходимо определить срок эксплуатации сужающего устройства, опорных, скользящих и уплотнительных элементов конструкции. Нужно определить время, через которое следует менять сужающее устройство (при изменении кромки сужающего устройства, изменяется и к.п.д. гидрофизического кавитационного теплового нагревателя), так как основная передача накопленной гидравлической энергии в тепловую происходит на кромке срыва между ламинарным течением жидкости при переходе её в турбулентное течение и так далее…

линия

При исследовании альтернативных источников получения тепловой энергии были проведены научно-исследовательские работы, в результате которых, было выведено двенадцать математических формул для расчёта гидрофизического кавитационного теплового нагревателя, и открыто отношение кинематической вязкости водного потока за единицу времени = 462,127493944895187929545225419... м²/с, при 20°С. и подтверждено, что кинематическая вязкость водного потока зависит не только от температуры, но и химического состава воды.

линия

Для детального понимания процесса кавитации необходимо знать новые законы гидродинамики и новый закон энергии материального тела расположенного в пространстве. Закон энергии гласит, что каждое материальное тело (молекула воды или воздуха), которое будет помещено в разные среды, будет обладать разной энергией. Смотрите законы и механизмы образования планет Солнечной cистемы и Галактик нашей Вселенной. Однако необходимо помнить, чтобы перенести любое материальное тело из одной среды в другую понадобиться работа, которая будет пропорциональна полученной энергии, выделенной из другой среды.

линия

Математически доказано, что при правильном изготовлении гидрофизического кавитационного теплового нагревателя, с учётом потерь на трение смеси воды и воздуха в трубопроводе и учётом потерь силы струи на вихревое сопротивление смеси воды и воздуха в пограничном слое сужающего устройства, к.п.д. теплового нагревателя достигает 76%. В зависимости от количества магнитов и магнитных систем, подвижное или неподвижное устройство предварительного прогревания жидких проводящих электрический ток химических компонентов, которые называются проводниками второго рода, увеличивает к.п.д. теплового нагревателя на 6-10%.

линия

Прогрессивное научно-техническое решение, которое направлено на применение гидрофизического кавитационного теплового нагревателя Белашова для автономных систем теплоснабжения в пожароопасных или загазованных помещениях. Нагревателей малой и средней мощности, для технических целей. В экологии, для утилизации отходов нефтепродуктов и получения из них топочного топлива и так далее…

линия

Необходимо подчеркнуть, что самым слабым звеном в конструкции гидрофизического кавитационного теплового нагревателя является:

- центробежный насос, который был изобретён 1890 году, где к.п.д. центробежных насосов составляет от 20 до 75%,

- электрический привод, где номинальный к.п.д. электродвигателей серии АОЛ и АО составляет от 74 до 92%, но такой к.п.д. электрических двигателей не соответствует действительности.

Смотрите второй и третий закон электрических и электротехнических явлений Белашова.
Патент Российской Федерации
 № 2175807. 

линия

Для производства гидрофизических кавитационных тепловых нагревателей необходимо применять энергосберегающие технологии. Такими свойствами обладают диэлектрические машины Белашова, так как электрические машины, которые изготовлены из железа, в наше время являются отсталыми технологиями, а применяя их вы заранее обрекаете любое новое и прогрессивное техническое решение на неудачу. Смотрите электрические машины Белашова, которые имеют:

- хорошее охлаждение,

- модульную конструкцию,

- высокую степень надежности,

- надежное сопротивление изоляции,

- небольшие габариты и небольшой вес,

- могут работать без съёмного коллектора,

- могут легко регулироваться по току и напряжению,

- могут быть изготовлены от нескольких Вт, до сотен кВт,

- диэлектрический статор не имеет потерь на гистерезис,

- могут иметь порог чувствительности менее одного Вольта,

- могут вращаться со скоростью меньше 1 оборота в минуту,

- диэлектрический статор не имеет потерь на вихревые токи,

- могут автоматически определять э.д.с. поступающего сигнала,

- могут иметь систему слежения и регулирования, которая способна автоматически изменять параметры машины,

- могут работать от одного или нескольких независимых источников различного напряжения и тока, а в южных странах от энергии солнечных батарей,

- диэлектрический статор не имеет потерь на реактивное сопротивление якоря,

- потребитель самостоятельно может комплектовать, из отдельных модулей, любые параметры машины.

В каждом модуле электрической машины можно установить множество рядов систем возбуждения и многовитковых обмоток, а также применить магниты с остаточной магнитной индукцией Br = 1,3 Тл и так далее…

линия

Смотрите гидрофизический кавитационный тепловой нагреватель Белашова.
Патент Российской Федерации
 № 2277678. 

линия

Cмотрите новые законы и математические формулы по гидродинамике.

линия

Смотрите комментарий по роторно-поршневому вакуум-насосу Белашова.

линия

Смотрите комментарий по законам и механизмам образования планет Солнечной системы и галактик нашей Вселенной.

линия

Смотрите математические формулы для расчёта гидрофизического кавитационного теплового нагревателя.
Патент Российской Федерации
 № 2277678. 

линия

Патенты  электрических  машин  Белашова.

Смотрите патент Российской Федерации  № 2414041.  

линия

Смотрите патент Российской Федерации  № 2394339.  

линия

Смотрите патент Российской Федерации  № 2368996.  

линия

Смотрите патент Российской Федерации  № 2368994.  

линия

Смотрите патент Российской Федерации  № 2320065.  

линия

Смотрите патент Российской Федерации  № 2218651.  

линия

Смотрите патент Российской Федерации  № 2175807.  

линия

Смотрите патент Российской Федерации  № 2130682.  

линия

Смотрите патент Российской Федерации  № 2118036.  

линия

Смотрите патент Российской Федерации  № 2096898.  

линия

Смотрите патент Российской Федерации  № 2047259.  

линия

Смотрите патент Российской Федерации  № 2073296.  

линия

Смотрите патент Российской Федерации  № 2025871.  

линия

Смотрите патент Российской Федерации  № 2000641.  

линия

Смотрите патент Российской Федерации  № 1831751.  

линия

Смотрите патент Российской Федерации  № 1786599.  

линия

Открыты  новые  законы  электрических  и  электротехнических  явлений  Белашова.

1. Новый закон определения мощности электрического источника.

2. Новый закон определения напряжения источника электрического заряда.

3. Новый закон определения максимальной формы сигнала переменного тока.

4. Новый закон определения максимальной формы сигнала постоянного тока.

5. Новый закон определения сопротивления нагрузки электрического источника.

6. Новый закон определения силы взаимодействия двух точечных зарядов расположенных в вакууме.

7. Новый закон определения скорости движения электрического заряда в данной точке траектории.

8. Новый закон определения эффективных значений разнообразных форм сигнала переменного тока.

9. Новый закон определения эффективных значений разнообразных форм сигналов постоянного тока.

10. Новый закон определения силы электрического заряда проходящего через поперечное сечение проводника.

11. Новый закон определения расстояние перемещения заряженных частиц при разной силе тока и разной нагрузке.

12. Первый закон определения силы тока источника электрического заряда проходящего через поперечное сечение проводника.

13. Второй закон определения силы тока источника электрического заряда проходящего через поперечное сечение проводника.

Научные  публикации  новых  законов  электрических  и  электротехнических  явлений.

Смотрите научную статью о новых законах электрических и электротехнических явлений.

Смотрите новые законы электрических явлений в «Международном научно-исследовательском журнале»  № 3-10 2013 года.

линия

Открыты  новые  законы  электрических  явлений,  основанные  на  константе  обратной  скорости  света.

1. Новый закон определения мощности электрического источника.

2. Новый закон определения напряжения источника электрического заряда.

3. Новый закон определения сопротивления нагрузки электрического источника.

4. Новый закон определения коэффициента диффузии электрического заряда в проводнике.

5. Новый закон определения силы тока электрического заряда проходящего через проводник.

6. Новый закон определения скорости перемещения электрически заряженных частиц по проводнику.

7. Новый закон определения количества оборотов электронов перемещающихся по окружности проводника.

8. Новый закон определения расстояния перемещения заряженных частиц при разной силе тока и разной нагрузке.

9. Новый закон определения силы источника электрического заряда проходящего через поперечное сечение проводника.

Научные  публикации  законов  электрических  явлений,  основанных  на  константе  обратной  скорости  света.

Смотрите научную статью о новых законах электрических явлений основанных на константе обратной скорости света.

Смотрите новые законы электрических явлений в «Международном научно-исследовательском журнале»  № 11-30 2014 года.

линия

Смотрите научную статью объясняющую происхождение эффекта Губера по новым законам электрических явлений основанных на константе обратной скорости света. Научно-практический журнал «Журнал научных и прикладных исследований»  № 4 2015 года страница 78. Свидетельство о государственной регистрации ПИ  № ФС 77-38591 ISSN 2306-9147.

линия

Смотрите научную статью объясняющую принцип работы двигателя Косырева-Мильроя по новым законам электрических явлений основанных на константе обратной скорости света. Научно-практический журнал «Журнал научных и прикладных исследований»  № 4 2015 года страница 87. Свидетельство о государственной регистрации ПИ  № ФС 77-38591 ISSN 2306-9147.

линия

Смотрите научную статью доказывающую существование планетарной модели строения атома по новым законам образования планет и Галактик нашей Вселенной. Научно-практический журнал «Журнал научных и прикладных исследований»  № 11 2015 года страница 117. Свидетельство о государственной регистрации ПИ  № ФС 77-38591 ISSN 2306-9147.

линия